Acid-base lecture for SHM Website

By Elizabeth Cerceo MD, FACP, FHM

- 1. Acidemia/alkalemia
- 2. Is the primary disorder metabolic or respiratory?
- 3. Calculate compensation
 - a. Metabolic acidosis: Winter's formula $PaCO_2 = 1.5 (HCO_3) + 8 \pm 2$
 - b. Metabolic alkalosis: $PaCO_2 = 0.75 \times \Delta HCO_3^{-1}$
 - c. Acute respiratory: ΔCO_2 of 10= ΔpH of 0.08, ΔHCO_3^- of 2
 - d. Chronic respiratory: ΔCO_2 of 10= ΔpH of 0.04, ΔHCO_3^- of
- 4. Calculate anion gap

Is there another acid base problem? If there is an anion gap metabolic acidosis, calculate a delta gap. Delta gap is the change in anion gap minus the change in bicarbonate. If this is negative, there is a coexisting nongap metabolic acidosis. If it is positive, there is a coexisting metabolic alkalosis.

Pearls:

- For each 1 gm albumin drop, the anion gap drops by 2.5. So if albumin is 3 gm, anion gap would be ~9.5 (if normal is 12).
- 2. Last two numbers of pH is ~ same as PaCO₂. Ex 7.22/21/65
- Low AG in myeloma, hypoalbuminemia, high cations (Mg⁺², Ca⁺², K⁺, cationic paraproteins), overestimation of Cl⁻ (Br⁻, I⁻) or underestimation of Na⁺ (hyperviscosity, hyperlipidemia)
- 4. D-lactic acidosis from short bowel syndrome with altered bowel flora present with recurrent encephalopathy with *normal* lactic acid. Treat with npo, iv dextrose, HCO₃-
- 5. Osmolal gap = measured -calculated osmoles Calc Osm= (2x Na⁺) + (glucose/18) + (BUN/2.8) >10 osm gap suggests methanol, ethanol.
- 6. Urine anion gap = $U_{Na} + U_{K} U_{Cl}$ (Negative value is normal. Positive value suggests RTA)

Examples:

- A 55 year-old man admitted with weakness, weight loss, and polyuria. Vitals 101°, 122/76, HR 105/min, RR 22/min. Labs Na⁺ 135, K⁺ 5.4, Cl⁻ 101, HCO₃⁻ 12. 7.32/24/104 Acidemia. Metabolic. AG 22. Starting bicarb 22-12(normal AG)=10, 10+12(starting bicarb)=22 so no concomitant metabolic abnormality. Winter's 26±2 so no concomitant respiratory disorder.
- A 72 year-old woman with 80 pack year smoking history, chronic NSAID abuse, and decreased urinary output is admitted with pneumonia. Labs Na⁺ 140, K⁺ 5, Cl⁻ 102, HCO₃⁻ 15. 7.10/50/51 Acidemia. Metabolic. AG 23. Starting bicarb 15-12(normal AG)=3, 3+15(starting bicarb)=18 so underlying non- anion gap metabolic acidosis. Winter's 30.5±2 so respiratory acidosis.
- A 72 year-old man with 100 pack year smoking history has had watery diarrhea for 3 days. Labs Na⁺ 136, K⁺ 3.3, Cl⁻ 105, HCO₃⁻ 19. 7.09/65/48. Acidemia. Respiratory. AG 12. Starting bicarb 12-12(normal AG)=0, 0+19(starting bicarb)=18 so non- anion gap acidosis.
- A 91 year-old woman is admitted with one week of diarrhea. Vitals 100.4°, 92/60 sitting and 70/40 standing, HR 100/min to 125/min. Labs Na⁺ 133, K⁺ 2.5, Cl⁻ 118, HCO₃⁻ 5. 7.11/16/94. Acidemia. Metabolic. AG 10. Starting bicarb (no need to calculate since normal anion gap). Winter's 15.5±2 so no concomitant respiratory disorder.
- A 23 year-old pregnant alcoholic with diabetes mellitus type I is admitted three days after stopping insulin. She has severe nausea and vomiting. Vitals 120/80 sitting and 108/80 standing, HR 124/min to 160/min. Labs Na⁺ 136, K⁺ 3.6, Cl⁻ 70, HCO₃⁻ 19. 7.58/21/104. Alkalemia. Respiratory. AG 47. Starting bicarb 47-12=35, 35+19=54 so concomitant non-anion gap metabolic acidosis.
- 6. A 25-year-old man with asthma has been dyspneic for four days. Labs Na⁺ 132, K⁺ 3.6, Cl⁻ 105, HCO₃⁻ 18. 7.44/28/69.
- A 40-year-old woman with gallstones presents with abdominal pain, vomiting, and hyperamylasemia. Labs Na⁺ 132, K⁺ 2.9, Cl⁻ 86, HCO₃⁻ 38. 7.56/48/85.